版本号: FP230630

Order: 010-59822688

Toll-free: 800-990-6057 /400-810-6057 TIANGEN BIOTECH (BEIJING) CO., LTD

1

FastFire qPCR PreMix (SYBR Green)

FastFire快速荧光定量PCR预混试剂

(SYBR Green)

目录号: FP207

产品内容

产品组成	FP207-01 20 μl×125 rxn	FP207-02 20 μl×500 rxn	FP207-03 20 μl×5000 rxn
2×FastFire qPCR PreMix (SYBR Green)	1.25 ml	4×1.25 ml	10×4×1.25 ml
50×ROX Reference Dye	250 µl	1 ml	10×1 ml
RNase-Free ddH ₂ O	2×1 ml	5×1 ml	10×5×1 ml

储存条件

本产品于 -30~-15°C可保存12个月。收到本产品后,请立即置于-30~-15°C避光保存。从-30~-15°C取出使用时,将冻存的FastFire qPCR PreMix和ROX Reference Dye融解,然后轻轻颠倒混匀,待溶液完全均一后再行使用。如解冻后没有使用,须彻底混匀后重新冷冻。(在解冻过程中盐会出现分层现象,未混匀进行冷冻,盐晶体的析出将会对酶造成损害)。如需一段时间内经常取用,可在2~8°C条件下储存3个月。避免反复多次冻融。

产品简介

本产品是采用SYBR Green I嵌合荧光法进行Real-Time PCR的专用试剂,可对目标 DNA进行快速、特异性的定量检测。优化的预混液可缩短Real-Time PCR的反应时间,适用 于标准或快速PCR仪。

FastFire qPCR PreMix采用了抗体修饰的Anti Taq DNA聚合酶,配合独特的快速PCR Buffer体系可确保在所有的Real-Time PCR仪上进行灵敏的qPCR反应,具有反应快速、PCR 反应时间缩短60%,同时具有高扩增效率,高扩增特异性和宽广的可信范围的特点,使你在不影响PCR效果的前提下更快获得结果,节约科研时间和能源。

试剂盒特点

- 1. FastFire qPCR PreMix采用了抗体修饰的Anti Taq DNA聚合酶,配合特制的快速PCR Buffer体系,可大大缩短变性、退火与延伸时间,可节省多达60%的反应时间,快速获得实验结果。
- 2. 本产品特制的快速PCR Buffer 体系含有独特的PCR稳定因子,在不损失PCR灵敏度和特异性的基础上进行快速反应,保证了FastFire qPCR PreMix高扩增效率,高扩增特异性和宽广的可信范围的特点。
- 3. FastFire qPCR PreMix中预混有SYBR Green I, PCR反应液配制时,只需加入模板、引物、灭菌蒸馏水便可进行快速Real-Time PCR反应,操作简单方便。
- 4. 本产品附带ROX Reference Dye, 用于消除信号本底以及校正孔与孔之间产生的荧光信号 误差,方便客户针对不同型号荧光定量PCR仪时选择对应浓度使用。

试剂盒原理

本产品采用了特异的抗体修饰热启动DNA聚合酶进行快速PCR扩增,通过检测反应进程中 SYBR Green I 的荧光强度,达到检测PCR产物扩增量的目的,适用于标准和快速PCR仪。

- 1. 本产品中特异的抗体修饰热启动DNA聚合酶,95℃条件下孵育1 min即可激活全部酶活, 在缩短变性时间的同时避免了非特异性产物的扩增。
- 2. 本产品的快速 PCR Buffer体系添加了独特的PCR稳定因子,配合精心优化的快速PCR Buffer体系,可大大缩短变性、退火和延伸时间,使PCR总运行时间缩短60%,更快获得 实验结果,而不影响PCR反应效果。
- 3. 本产品针对cDNA模板和gDNA模板结构组成的差异,对PCR的反应步骤进行了特别的优化,使较难扩增的gDNA模板也能获得良好的PCR结果。

注意事项

- 1. 本产品中含有荧光染料SYBR Green I, 保存本产品或配制PCR反应液时应避免强光照射。
- 如果试剂没有混匀,其反应性能会有所下降。使用时请上下颠倒轻轻混匀,请不要使用振荡器进行混匀,尽量避免出现泡沫,并经瞬时离心后使用。
- 3. 引物纯度对反应特异性影响很大,建议使用PAGE级别以上纯化的引物。
- 4. 引物终浓度为0.3 μM可以在大多数体系中获得良好的扩增结果。如果需要进一步优化, 可以在 0.2-0.5 μM范围内调整引物浓度。
- 5. 20 μl反应体系中, cDNA模板的使用量一般小于100 ng, 基因组DNA模板量一般小于50 ng, 逆转录产物作为模板时,使用量应不超过PCR体系终体积的20%。

操作方法

<1> 建立Real-Time PCR反应体系:

请注意将FastFire qPCR PreMix和ROX Reference Dye避光保存。

- 1. 融解FastFire qPCR PreMix (如果保存在-30~-15°C), ROX Reference Dye, 模板, 引物和RNase-Free ddH₂O, 并将所有试剂在室温下溶解并彻底混匀。
 - 2. 建议置于冰上进行Real-Time PCR反应液的配制。

反应体系:

组成成分	50 µl 体系	25 µl 体系	20 µl 体系	终浓度
2× FastFire qPCR PreMix	25 µl	12.5 µl	10 µl	1×
正向引物(10 µM)	1.5 µl	0.75 µl	0.6 µl	300 nM*
反向引物(10 μM)	1.5 µl	0.75 µl	0.6 µl	300 nM*
cDNA模板	_	_	_	-ng-pg
50×ROX Reference Dye [△]	_	_	_	_
RNase-Free ddH ₂ O	至50 µl	至25 µl	至20 µl	_

^{*}引物终浓度为300 nM可以在大多数体系中获得良好的扩增结果。扩增效率不高时,可增加PCR反应体系中的引物浓度;发生非特异扩增时,可适当减少PCR反应体系中的引物浓度。需要进一步优化引物浓度的,可以在200-500 nM范围内调整。

△ 几种常见仪器的匹配ROX Reference Dye浓度见下表:

仪器	终浓度
ABI PRISM 7000/7300/7700/7900HT/StepOne等	5× (例如:5 μl ROX/50 μl体系)
ABI 7500、7500 Fast;	
Stratagene Mx3000P、Mx3005P和Mx4000等	1× (例如:1 μl ROX/50 μl体系)
Roche仪器, Bio-Rad仪器, Eppendorf仪器等	无需添加

<2>进行Real-Time PCR反应

建议采用两步法PCR反应程序进行反应;若模板量较低等因素导致扩增效果不佳,可使用三步法程序进行PCR反应。

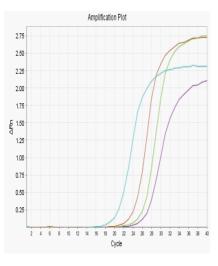
两步法反应程序:

阶段	循环	温度	时间	内容	荧光信号采集
预变性	1×	95°C	1 min	预变性	否
PCR	40×	95°C	5 sec	变性	否
反应	407	60°C ^{△1}	15 sec ^{△2}	退火/延伸	是
熔解曲线分析(Melting/Dissociation Curve Stage)					

三步法反应程序:

阶段	循环	温度	时间	内容	荧光信号采集
预变性	1×	95°C	1 min	预变性	否
DOD	40×	95°C	5 sec	变性	否
PCR 反应		50-60°C ^{∆3}	10 sec	退火	否
ス四		72°C	15 sec ^{△2}	延伸	是
熔解曲线分析(Melting/Dissociation Curve Stage)					

- △1 请先使用60°C 15 sec进行扩增。如果需要进一步优化,可以尝试在56-66°C 范围内进行。
- \triangle 2 使用不同型号仪器进行时间设定时,请按照仪器使用说明书要求进行实验操作,几种常见仪器的时间设定见下表:


使用ABI 7700/7900HT/7500 Fast, Roche, BioRad和Agilent等公司荧光定量PCR仪时请设定在15 sec。

使用ABI 7000和7300时请设定在31 sec。

使用ABI7500时请设定在32 sec。

- △3 通常引物退火温度比引物的解链温度 (Tm) 低5°C,如果引物碱基数较少,可以适当提高退火温度,这样可以使PCR的特异性增加,如果碱基数较多,那么可以适当减低退火温度。
- 3. 盖上反应管,轻柔混匀。可短暂离心,确保所有组分均在管底。
- 4. 将反应体系置于荧光定量PCR仪中,开始反应。

<3> Real-Time PCR反应举例(PCR仪选用ABI 7500 Fast):

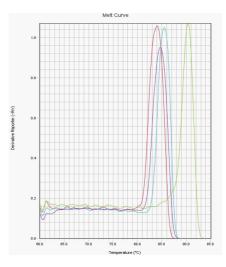


图1 扩增曲线

图2 熔解曲线

图1: 4对不同检测体系以单链cDNA为模板,利用FastFire qPCR PreMix (Cat#FP207)

经qPCR测试后,通过图2熔解曲线分析,均为单一峰,未发现非特异性扩增和引物二聚体产生。cDNA合成是使用FastKing cDNA 第一链合成试剂盒(Cat#KR116)进行。

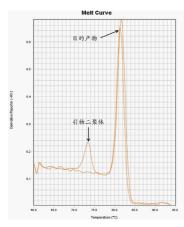


图3 熔解曲线分析

图3中使用FastFire qPCR PreMix的熔解曲 线仅有单一峰,为特异性扩增产物,其Tm值为83.5°C;使用国外A公司试剂除了特异性扩增产物外,还出现了引物二聚体。引物二聚体的Tm值一般在75°C左右。

进行RT-qPCR反应时的操作建议

进行RT-PCR反应时,有三种cDNA第一链合成试剂盒可以选择,分别是FastKing RT Kit(with gDNase)(KR116),FastKing gDNA Dispelling RT SuperMix(KR118)和TIANScript II cDNA第一链合成试剂盒(KR107)。

FastKing RT Kit(with gDNase)(KR116)可3 min去除基因组DNA的残留,使基因定量结果更加真实可信,适用于模板量为50 ng-2 μg的总RNA的快速反转录(共需21 min),是荧光定量PCR的反转录实验的优秀选择。

1. 将模板RNA在冰上解冻; $5 \times gDNA$ Buffer、FQ-RT Primer Mix、 $10 \times King$ RT Buffer、RNase-Free ddH₂O在室温 (15-30°C) 解冻,解冻后迅速置于冰上。使用前将每种溶液涡旋振荡混匀,简短离心以收集残留在管壁的液体。

以下操作步骤请在冰上进行。为了保证反应液配制的准确性,进行各项反应时,应先配制成Mix,然后再分装到每个反应管中。

2. 按照表1的基因组DNA的去除体系配制混合液,彻底混匀。简短离心,并置于42℃, 孵育3 min。然后置于冰上放置。

组成成分	使用量
5×gDNA Buffer	2 µl
Total RNA	-
RNase-Free ddH₂O	补足到10 µl

表1 gDNA去除反应体系

3. 按照表2的反转录反应体系配制混合液。

试剂	使用量
10×King RT Buffer	2 µl
FastKing Enzyme Mix	1 μΙ
FQ-RT Primer Mix	2 µl

补足到10 ul

表2 反转录反应体系

4. 将反转录反应中的mix,加到gDNA去除步骤的反应液中,充分混匀。

RNase-Free ddH₂O

- 5. 42°C, 孵育15min。
- 6. 95℃,孵育3min之后放于冰上,得到的cDNA可用于后续荧光定量PCR反应或低温保存。

引物设计说明

进行Real-Time PCR反应时,PCR引物的设计非常重要。设计PCR扩增效率高,反应特异性强的引物可以参考以下要求。

◆ 设计引物要求如下:

引物长度	18-30个碱基
GC含量	40-60%
Tm值	引物软件都可以给出Tm,与引物长度,碱基组成,引物使用缓冲
	的离子强度也有关。
	上下游引物的Tm值要尽量接近。
	简单的Tm计算公式为: Tm = 4°C(G + C)+ 2°C(A + T)。
	一般采用较引物Tm值低5°C作为PCR退火温度。
	提高退火温度可以增加PCR反应的特异性。
引物及PCR扩增	PCR扩增产物适宜长度在80-200 bp之间。
产物序列	尽量避开在模板的二级结构区域设计引物。
	避免上下游引物3′端之间形成2个或以上的互补碱基以减少引物
	二聚体的形成。
	引物3'端碱基不能有多于3个连续的G或C。
	引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构。
	避免引物3'末端碱基为T。
	引物序列中A、T、G、C要尽量均匀分布。

常见问题

1. 无扩增信号或扩增曲线起峰晚或仅有引物二聚体

原因	解决办法
DNA模板中存在抑制剂	重新纯化模板或降低模板使用量
Mg ²⁺ 浓度不合适	使用FastFire qPCR PreMix时,PCR反应体系中Mg ²⁺ 的终浓
	度为2 mM。对有些扩增体系,可以将Mg ²⁺ 终浓度提高到
	5 mM。进行Mg ²⁺ 终浓度优化时,建议每次增加0.5 mM Mg ²⁺
	浓度进行实验。
加样错误或试剂问题	检查试剂浓度和保存条件,包括所使用的引物和模板。重复
	进行实验。
PCR 条件、引物序列	请确认引物未发生降解,引物浓度及PCR 条件,扩增不好
或浓度不当	时,通常先尝试降低退火温度,延长退火时间和提高引物浓
	度,有时也可以提高退火温度,增加延伸时间,降低升温速
	度。对于GC 含量高的模板,可以适当延长变性时间。如果还
	是扩增不好,请重新设计引物。
起始模板问题	检查起始模板的浓度,保存条件和质量。重新对模板进行线性
	梯度稀释,并用新稀释模板进行实验。增加起始模板使用量。

2. NTC出现较高的荧光值

原因	解决办法
试剂污染	建议使用新试剂进行实验。
PCR反应液配制	
时发生污染	采取必要的防污染策略(如使用带滤芯的枪头)。
引物出现降解	可以使用变性聚丙烯酰胺胶检测引物降解情况。

3. 出现引物二聚体和(或) 非特异扩增

原因	解决办法
Mg ²⁺ 浓度不合适	使用FastFire qPCR PreMix的反应体系含有Mg ²⁺ 的终浓度
	为2 mM。对有些扩增体系,可以将Mg ²⁺ 终浓度增加到
	5 mM。建议每次增加0.5 mM Mg2 ⁺ 浓度进行优化。
PCR退火温度太低	建议每次增加2°C进行退火温度优化。
引物设计不合适	考虑重新设计引物序列。
PCR产物太长	荧光定量PCR产物适宜长度在100-150 bp之间,而且不
	应该超过500 bp。
引物出现降解	可以使用变性聚丙烯酰胺胶检测引物降解情况。
计量误差	反应体积太小会导致检测精度下降。请根据定量PCR仪
	推荐的反应体积重新实验。

4. 定量值重现性差

原因	解决办法
仪器方面的故障	因为仪器的不适用,在温度管理或检测时产生重现性差。
	请根据相应仪器的说明书进行点检。
样品纯度不好	不纯的样品会导致实验的重现性差。
稀释的模板放置太久	通过梯度稀释的模板最好现配现用。
引物质量下降	尽量避免新合成引物批次间的差异,可以使用原来质量
	好的引物做为对照。
PCR 反应条件、引物	扩增效率差的PCR 较容易产生重现性差。通过变更引物
浓度、序列等不恰当	的浓度或PCR 反应条件来进行调整。扩增不好时,一般
	可降低退火温度或提高引物浓度,也可以延长延伸时间。
	如模板的GC含量较高,可延长变性时间。仍得不到改
	善时,建议重新设计引物。
计量误差	反应体积太小会导致检测精度下降。请根据定量PCR
	仪推荐的反应体积重新实验。

TIANGEN 官方微信,专业服务助力科研:

- 可视化操作指南
- 技术公开课合辑
- 全线产品查询 ● 最新优惠活动

- 在线专家客服
- 微信直播课堂

坚持 "CUSTOMER FIRST"理念 秉承"质量为天,服务为根"宗旨!

TIANGEN为您提供从样本处理, 核酸纯化到下游检测的整体解决方案

科研试剂

- 样本保护与处理
- 磁珠法外泌体系列
- 基因组 DNA 提取
- 质粒提取
- 总 RNA 提取
- DNA 产物纯化 / 胶回收
- PCR 系列

- NGS 文库制备
- 表观遗传学
- RT-PCR 系列
- 荧光定量 PCR 系列
- 克隆和点突变
- DNA 分子量标准
- 蛋白表达和检测

科研解决方案

- 快速分子克隆整体解决方案
- 基因表达分析快速解决方案
- 环境微牛物解决方案
- 复杂样本 RNA 解决方案